大肠杆菌“互养”可合成红景天苷
来源:《代谢工程》 时间:2018/07/11

 

 

天津大学合成生物学团队首次采用大肠杆菌共培养策略合成了红景天苷,产量达到 6.03 / 升,是用单菌生产的 20 倍以上。近日,相关研究成果发表在国际学术期刊《代谢工程》(Metabolic Engineering)上。

红景天苷作为珍稀中药材红景天的活性成分,广泛应用于治疗脑缺血、疲劳、缺氧和神经退化性疾病,还具有保护肝脏、预防压力引起的心血管紊乱等功效。目前,从植物红景天中提取分离红景天苷仍是其主要获取方式。但野生红景天生长在海拔 2500 米~5500 米的高寒地区,由于 3 年~5 年生的根才能用于提取红景天苷,可采集的资源十分有限,且红景天苷含量很少。而我国年消费红景天药材高达 7000 吨。

研究人员将红景天苷的生物合成途径分配在两个菌株中,进行了深度代谢改造。一株为苯丙氨酸缺陷型的苷元菌株,以木糖为主碳源,合成酪醇。另一株为酪氨酸缺陷型的糖基化菌株,以葡萄糖为碳源,将酪醇糖基化后,生成红景天苷。新设计的两种菌株无法独立存活,但将两株菌一起培养时,苷元菌株可以提供糖基化菌株需要的酪氨酸,糖基化菌株可以提供苷元菌株需要的苯丙氨酸,形成彼此依赖的互利共生系统。同时,为解除两种菌株对葡萄糖的碳源竞争,研究人员通过代谢改造,使苷元菌株可以优先利用木糖,糖基化菌株只能利用葡萄糖,从而保证了更多的葡萄糖进入糖基化菌株合成红景天苷。该互养系统还可通过调控葡萄糖和木糖的比例控制两种菌群的比例,从而使共培养系统更加稳定和高效。

专家指出,该共培养系统的优点是,只要更换糖基化酶基因,就可合成其他糖苷产物,在实际应用中具有极强的灵活性。此外,大肠杆菌是繁殖速度最快的工业微生物,其发酵原料可从秸秆等纤维素生物质中制备,廉价易得,因而具有广阔的产业化应用前景。(来源:生物360

 

Convergent engineering of syntrophic Escherichia colicoculture for efficient production of glycosides

 

Abstract  Synthetic microbial coculture to express heterologous biosynthetic pathway for de novo production of medicinal ingredients is an emerging strategy for metabolic engineering and synthetic biology. Here, taking efficient production of salidroside as an example of glycosides, we design and construct a syntrophic Escherichia coli-E. coli coculture composed of the aglycone (AG) strain and the glycoside (GD) strain, which convergently accommodate biosynthetic pathways of tyrosol and salidroside, respectively. To accomplish this the phenylalanine-deficient AG strain was engineered to utilize xylose preferentially and to overproduce precursor tyrosol, while the tyrosine-deficient GD strain was constructed to consume glucose exclusively and to enhance another precursor UDP-glucose availability for synthesis of salidroside. The AG and GD strains in the synthetic consortium are obligatory cooperators through crossfeeding of tyrosine and phenylalanine and compatible in glucose and xylose mixture. Through balancing the metabolic pathway strength, we show that the syntrophic coculture was robust and stable, and produced 6.03?g/L of salidroside. It was the de novo production of salidroside for the first time in E. coli coculture system, which would be applicable for production of other important glycosides and natural products.

 

原文链接:https://www.sciencedirect.com/science/article/pii/S1096717618300867

 

附件: