庞学勇
  • 庞学勇
  • 职  务:项目组主任
  • 电子邮件:pangxy@cib.ac.cn
  • 职  称:研究员
  • 学  历:博士研究生
  • 通讯地址:四川省成都市天府新区群贤南街23号
  • 邮  编:610213

个人简历

     庞学勇,博士,研究员,博士生导师,地表过程与生态系统管理项目组主任。1999年、2002年于四川农业大学土壤学专业学士、硕士毕业,进入中科院成都生物研究所工作,2009年于中国科学院研究生院植物学专业,获理学博士学位,先后任副研究员、研究员,2010-2011年在University of California Santa Cruz分校访学。主持国家自然科学基金4项、国家重点研发计划子课题3项、中科院重点部署项目、四川省第三次全国土壤普查土壤生物调查专项、四川省“环境治理与生态保护”重大专项项目(课题)和省重点研发计划项目、国家科技支撑计划子课题、中科院先导性A类专项(碳专项)子课题、“西部之光”项目、大型企业横向委托项目等多项,参加过国家973计划青藏项目专题、国家科技支撑课题、中科院西部行动计划项目等10余项;发表相关论文100余篇/章,其中SCI论文50余篇,出版专著1部,参编专著5部,被引用超3000次;国家发明专利授权5项,参加项目成果获四川省科技进步奖等。

研究方向

土壤生态学、恢复生态学、森林生态学

多年来一直聚焦于青藏高原东部脆弱山地生态系统恢复与重建过程中土壤生态功能研究,以山地各垂直带(干旱河谷、亚高山及高山带)生态系统土壤退化关键问题入手,深入开展了土壤结构与功能及其恢复过程研究。先后完成了高山森林采伐迹地土壤结构与功能及其演替趋势评估;揭示了亚高山云杉人工林土壤质量演变过程、特点与肥力退化机理,并初步提出低效人工林生态功能提升(多样性、土壤肥力和碳固持等)的策略与技术;阐述了西南干旱河谷气候、土壤结构与肥力时空变化格局、规律性与特点;开展了成兰铁路、川藏铁路等重大工程生态环境风险识别、预警和扰损区(渣场、边坡等)生境(土壤)重构、基质改良和乡土物种繁育与群落配置等生态恢复技术研究。目前主要兴趣为:

(1)   退化生态系统恢复:恢复过程与生态功能提升技术研究,包括恢复过程土壤团聚体结构形成、有机碳积累机制与增汇技术;土壤生物(微生物、线虫、跳虫、螨、原生生物等)多样性及生态功能提升与调控管理技术等。

(2)   重大工程生态修复:复杂艰险区工程建设生态环境风险识别、形成演化机制及预警技术;重大工程建设/矿山开采扰损区生态修复、土壤基质改良、促生功能微生物菌剂研发、乡土物种繁育与群落配置等技术。

(3)   农田系统土壤改良:农田(茶果园)有机残余物高效利用与固碳增汇技术;低产果园土壤改良技术;特色农产品土壤生物健康评价等。


社会任职

 

获奖及荣誉

     2012年度四川省科技进步三等奖

承担科研项目情况

[1]    国家重点研发计划,CZ铁路工程受损区生态恢复关键技术(负责课题执行). 重大工程生态恢复土壤重构技术研究与示范. 2023-2026,子课题主持

[2]    国家自然科学面上项目,西南亚高山退化森林恢复过程中土壤团聚体结构及稳定性机制研究,2022-2025,主持

[3]    四川省全国第三次土壤普查,四川省全国第三次土壤普查土壤生物调查(川西高原及攀西地区). 2023-2025,主持

[4]    四川省重点研发计划项目,农田有机废弃物污染防治与减排增汇关键技术研究. 2022-2023,主持

[5]    大型企业委托,工程建设生态风险耦合演化机理及生态环境风险预警技术研究. 2022-2024,主持

[6]    大型企业委托,岷江柏群落特征及养护关键技术研究. 2023-2024. 主持

[7]    中国科学院重点部署项目,铁路建设生态保护与工程设计融合技术研究,2019-2021,主持

[8]    国家自然科学基金面上项目,西南亚高山针叶林自然与人工恢复及调控管理对土壤有机质积累与稳定性影响机制,2018-2021,主持

[9]    国家重点研发计划项目. 西南高山亚高山退化森林生态系统恢复重建技术研究,2017-2020,子课题主持

[10]  国家重点研发计划项目,西南干旱河谷区生态综合治理及生态产业发展技术研发,2017-2020,子课题主持

[11]  四川省“环境治理与生态保护”重大专项,亚高山退化生态系统水源涵养功能提升技术与示范,2018-2020,项目主持


代表论著

[1]Wang M, Lin M, Liu QH, Li C,Pang XY*. 2024. Fungal, but not bacterial, diversity and network complexity promote network stability during roadside slope restoration.Science of The Total Environment, 922: 171007

[2]    Qiang W, Gunina A, Kuzyakov Y, Liu QH, Pang XY*. 2024. Decoupled response of microbial taxa and functions to nutrients: the role of stoichiometry in plantations. Journal of Environmental Management, 356: 120574

[3]    Luo L, Li L, Raza A, Zhao CZ, Pang XY, Zhang JB, M ller C, Yin CY*. 2024. Organic fertilizer and Bacillus amyloliquefaciens promote soil N availability via changing different mineralization–immobilization turnover rates in acidic soils. Agriculture, Ecosystems & Environment, 366:108950

[4]    Zhang AJ, Zhang Y, Potapov AM, Bhusal DR, Qiang W, Wang M, Pang XY*. 2023. Changes in diversity and functional groups of soil mite communities are associated with properties of food resources along a subalpine secondary succession. Geoderma, 432: 116395

[5]    Zhang ZT, Luo RY, Liu QH, Qiang W, Liang J, Hou EQ, Zhao CZ*, Pang XY*. 2023. Linking soil phosphorus fractions to abiotic factors and the microbial community during subalpine secondary succession: Implications for soil phosphorus. Catena, 233: 107501

[6]    Qiang W, Gunina A, Kuzyakov Y, Luo RY, Zhang Y, Liu B, Pang XY*. 2023. Shifts of understory vegetation induced by thinning drive the expansion of soil rare fungi. Journal of Environmental Management, 342: 118119

[7]    Qiang W, Gunina A*, Kuzyakov Y, He LL, Zhang Y, Liu B, Pang XY*. 2023. Contributions of mycorrhizal fungi to soil aggregate formation during subalpine forest succession. Catena, 221: 106800

[8]    Zhang Y, Zhang AJ, Scheu S, Bhusal DR, Luo RY, Qiang W, Wang M, Pang XY*. 2023. Phosphorus addition increases the total abundance and favors microbivorous Collembola in subalpine plantation forest. Applied Soil Ecology, 189: 104948.

[9]    Xie LL, Li WT, Pang XY, Liu QH, Yin CY*. 2023. Soil properties and root traits are important factors driving rhizosphere soil bacterial and fungal community variations in alpine Rhododendron nitidulum shrub ecosystems along an altitudinal gradient. Science of The Total Environment, 864: 161048

[10]Luo RY, Kuzyakov Y, Zhu B, Qiang W, Zhang Y, Pang XY*. 2022. Phosphorus addition decreases plant lignin but increases microbial necromass contribution to soil organic carbon in a subalpine forest. Global Change Biology, 28: 4194-4210.

[11]Qiang W, He LL, Zhang Y, Liu B, Liu Y, Liu QH, Pang XY*. 2021. Aboveground vegetation and soil physicochemical properties jointly drive the shift of soil microbial community during subalpine secondary succession in southwest China. Catena, 202: 105251.

[12]Wang M, Liu QH, Pang XY*. 2021. Evaluating the ecological effects of roadside slope restoration techniques: A global meta-analysis. Journal of Environmental Management, 281: 111867.

[13]Xie LL#, Wang LX#, Pang XY, Liu QH, Yin CY*. 2021. Effects of soil water regime and nitrogen addition on ectomycorrhizal community structure of Picea asperata seedlings. Journal of Plant Nutrition and Soil Science, 184:415–429.

[14]Wang LX#, Pang XY#, Li N, Qi KB, Huang JS, Yin CY*. 2020. Effects of vegetation type, fine and coarse roots on soil microbial communities and enzyme activities in eastern Tibetan plateau. Catena, 194: 104694.

[15]Qiang W, Yang B, Liu Y, Qi KB, Yang TH, Pang XY*. 2020. Effects of reclamation age on soil microbial communities and enzymatic activities in sloping Citrus Orchards of southwestern China. Applied Soil Ecology, 152: 103566.

[16]Yang B, Qi KB, Bhusal DR, Huang JS, Chen WJ, Wu QS, Hussain A, Pang XY*. 2020. Soil microbial community and enzymatic activity in soil particle-size fractions of spruce plantation and secondary birch forest. European Journal of Soil Biology, 99: 103196.

[17]Qi KB, Pang XY, Yang B, Bao WK*. 2020. Soil carbon, nitrogen and phosphorus ecological stoichiometry shifts with tree species in subalpine plantations. PeerJ, 8: e9702.

[18]Xiong QL, Luo XJ, Liang PH, Xiao Y. Sun H, Pan KW, Wang LX, Li LJ, Pang XY. 2020. Fire from policy, human interventions, or biophysical factors? Temporal–spatial patterns of forest fire in southwestern China. Forest Ecology and Management, 474: 118381.

[19]Huang JS, Liu LL, Qi KB, Yang TH, Yang B, Bao WK, Pang XY*. 2019. Differential mechanisms drive changes in soil C pools under N and P enrichment in a subalpine spruce plantation. Geoderma, 340: 213-223

[20]Yang B*, Pang XY, Bao WK*, Li Q, Liang WJ, Shao YH, Fu SL, Liu XH, Ge F. 2019. The interactions between soil microbes and microbial feeding nematodes correlate with fruit productivity of Illicium verum Hook. Global Ecology and Conservation, 17e00511

[21]Yang B*, Zhang T, Huang JS, Bhusal DR, Pang XY. 2019. Response of soil nematode community to phosphorous amendment in a subalpine spruce plantation. CLEAN-Soil, Air, Water, 47: 1800202

[22]Huang JS, Chen WJ, Qi KB, Yang B, Bao WK*, Pang XY*. 2018. Distinct effects of N and P addition on soil enzyme activities and C distribution in aggregates in a subalpine spruce plantation. Biogeochemistry, 141: 199–212.

[23]Yin CY*, Palmroth S, Pang XY, Tang B, Liu Q, Oren R. 2018. Differential responses of Picea asperata and Betula albosinensis to N supply imposed by water availability. Tree Physiology, 38(11):1694-1705

[24]Wang Z, He QH, Hu B, Pang XY, Bao WK*. 2018. Gap thinning improves soil water content, changes the vertical water distribution and decreases the fluctuation. Canadian Journal of Forest Research, 48: 1042-1048

[25]Yang B*,Pang XY, Bao WK*, Zhou KX. 2018. Thinning-induced canopy opening exerted a specific effect on soil nematode community.Ecology and Evolution, 8: 3851–3861.

[26]Pang XY*, Huang JS, Zhao QX, Feng DF, Bao WK*, Tian GL. 2017. Ecosystem carbon stock across a chronosequence of spruce plantations established on cutovers of a high-elevation region. Journal of Soils and Sediments, 17(9), 2239-2249.

[27]Feng DF, Bao WK*, Pang XY*. 2017. Consistent profile pattern and spatial variation of soil C/N/P stoichiometric ratios in the subalpine forests. Journal of Soils and Sediments,17 (8): 2054-2065.

[28]Yin C*, Xiao QY, Sun YY, Liu Q, Pang XY*. 2017. Picea asperatapioneer and fibrous roots have different physiological mechanisms in response to soil freeze-thaw in spring.Biologia Plantarum, 61 (4): 709-716.

[29]Yang B*, Pang XY, Hu B, Bao WK*, Tian GL. 2017. Does thinning-induced gap size result in altered soil microbial community in pine plantation in eastern Tibetan Plateau? Ecology and Evolution, 7(9): 2986–2993.

[30]Wang QK*, Zhang WD, Sun T, Chen LC, Pang XY, Wang YP, Xiao FM. 2017. N and P fertilization reduced soil autotrophic and heterotrophic respiration in a young Cunninghamia lanceolata forest. Agricultural and Forest Meteorology, 232: 66-73.

[31]Pang XY*, Hu B, Bao WK*, Vargas TO, Tian GL. 2016. Effect of thinning-induced gap size on soil CO2efflux in a reforested spruce forest in the eastern Tibetan Plateau. Agricultural and Forest Meteorology, 220: 1-9.

[32]Hu B, Yang B, Pang XY*, Bao WK*, Tian GL. 2016. Responses of soil phosphorus fractions to gap size in a reforested spruce forest. Geoderma, 279: 61-69.

[33]Huang JS, Hu B, Qi KB, Chen WJ, Pang XY*, Bao WK*, Tian GL. 2016. Effects of phosphorus addition on soil microbial biomass and community composition in a subalpine spruce plantation. European Journal of Soil Biology, 72: 35-41.

[34]Yin C, Pang XY, Peuke AD, Wang X, Chen K, Gong RG. 2016. Growth and photosynthetic responses in Jatropha curcas L. seedlings of different provenances to watering regimes. Photosynthetica, 2016, 54(3):367-373.

[35]Pang XY#, Zhu B#, L XT, Cheng WX*. 2015. Labile substrate availability controls temperature sensitivity of organic carbon decomposition at different soil depths. Biogeochemistry, 126:85-96.

[36]Zhao QX,Pang XY, Bao WK, He QH. 2015.Effects of gap-model thinning intensity on the radial growth of gap-edge trees with distinct crown classes in a spruce plantation. Trees-Structure and Function, 29:1861–1870.

[37]Shao YF, Bao WK, Chen DM, Eisenhauer N, Zhang WX, Pang XY, Xu G, Fu SL*. 2015. Using structural equation modeling to test established theory and develop novel hypotheses for the structuring forces in soil food webs. Pedobiologia, 58(4): 137-145

[38]Yan XL, Bao WK*,Pang XY. 2014.Indirect effects of hiking trails on the community structure and diversity of trunk-epiphytic bryophytes in an old-growth fir forest.Journal of Bryology, 36(1):44-55.

[39]Pang XY, Bao WK*, Zhu B, Cheng WX. 2013. The response of soil respiration and its temperature sensitivity to thinning in a pine plantation. Agricultural and Forest Meteorology,171/172, 43-50.

[40]Yan XL, Bao WK*,Pang XY, Zhang NX, Chen JQ. 2013. Regeneration strategies influence ground bryophyte composition and diversity after forest clearcutting. Annals of Forest Science, 70(8): 845-861.

[41]Yin C, Pang XY,* Chen K, Gong RG, Xu G, Wang X. 2012. The water adaptability ofJatropha curcasis modulated by soil nitrogen availability. Biomass and Bioenergy, 12: 71-81.

[42]Pang XY, Bao WK*, Wu N. 2011. The effect of clear-cutting of subalpine coniferous forest on soil physical and chemical properties in eastern Tibetan Plateau. Soil Use and Management, 27, 213-220.

[43]Pang XY, Bao WK*. 2011. Effect of substituting plantation species for native shrubs on the water-holding characteristics of the forest floor on the eastern Tibetan Plateau. Journal of Resources and Ecology, 2(3):289-297.

[44]Pang XY, Wu N., Liu Q., Bao WK*. 2009. The relation of soil microorganism, enzyme activity and soil nutrients under subalpine coniferous forest in Western Sichuan. Acta Ecologica Sinica, 29: 286-292.

[45]Yin C*, Pang XY, Lei Y. 2009. Populus from high altitude has more efficient protective mechanisms under water stress than from low-altitude habitats: a study in greenhouse for cuttings. Physiologia Plantarum, 137(1): 22-35.

[46]Yin C*, Pang XY, Chen K. 2009. The effects of water, nutrient availability and their interaction on the growth, morphology and physiology of two poplar species. Environmental and Experimental Botany, 67: 196-203.

[47]Pang XY, Bao WK* Zhang YM. 2006. Evaluation of soil fertility under different Cupressus chengiana forests using multivariate approach. Pedosphere, 16(5): 602-615.

[48]张卓婷, 陶然, 罗如熠, 周俊, 李子豪, 赵春章*, 庞学勇*. 2024. 次生演替过程中土壤磷组分及有效性研究进展. 应用与环境生物学报,DOI: 10.19675/j.cnki.1006-687x.2023.03031

[49]陈俊文, 刘庆华, 庞学勇*. 2023. 一株厚壁隔孢伏革菌的筛选及木质纤维素降解特性. 西南农业学报,36( 11): 2491 -2499

[50]陈俊文, 刘庆华, 庞学勇*. 2022. 农林残余物堆肥微生物群落影响因素研究进展. 西南农业学报,35261-270

[51]张燕,罗如熠,张阿娟,庞学勇*. 2022. 土壤跳虫对氮磷添加响应的研究进展. 应用生态学报, 33(9): 2585-2592.

[52]张燕,强薇,罗如熠,王敏,庞学勇*. 2022. 氮磷添加对土壤微生物生长、周转及碳利用效率影响研究进展. 应用与环境生物学报, 28 (2): 526-534

[53]庞学勇,向双,赵文强,李丹丹,刘庆*. 2021. 亚高山次生灌丛促进建群树种更新恢复技术. 应用与环境生物学报, 27 (3): 667-676

[54]刘庆,庞学勇,向双,潘开文. 2021. 西南高山亚高山不同演替阶段退化森林生态系统的恢复重建. 应用与环境生物学报, 27 (3): 513-518

[55]何露露,强薇,张燕,刘银,刘兵,庞学勇*. 2021. 川西亚高山针叶林次生演替对土壤持水量的影响. 应用与环境生物学报, 27 (3): 639-647

[56]何露露,庞学勇*. 2021. 川西亚高山4种典型灌丛岛土壤持水能力及其影响因素. 应用与环境生物学报, 27 (3): 632-638

[57]刘银,何露露,强薇,杨兵,庞学勇*. 2021. 经营模式对大渡河干暖河谷黄果柑坡地果园土壤养分的影响. 应用与环境生物学报, 27(2): 271-279

[58]刘银, 何露露, 强薇, 杨兵, 庞学勇*. 2021. 经营模式对大渡河干暖河谷黄果柑坡地果园土壤微生物生物量和酶活性的影响. 应用与环境生物学报, 27(2): 280-288

[59]刘银,杨兵,祁凯斌,杨婷惠,庞学勇*. 黄果柑果园不同坡位土壤水文生态功能及其影响因子. 应用与环境生物学报, 2020, 26 (3): 649-657

[60]祁凯斌,杨婷惠,黄俊胜,包维楷,庞学勇*. 2018. 亚高山森林自然与人工恢复对土壤涵水能力的影响. 生态学报,38(22): 8188-8128

[61]杨婷惠,祁凯斌,黄俊胜,包维楷,庞学勇*. 2018. 林窗式疏伐对云杉人工林土壤持水性能的影响. 应用与环境生物学报,24 ( 5 ) : 1171-1178

[62]陈文静,祁凯斌,黄俊胜,杨婷惠,包维楷,庞学勇*. 2017. 川西不同树种人工林对土壤涵水能力的影响. 生态学报,37(15): 4998-5006

[63]陈文静,祁凯斌,黄俊胜,杨婷惠,包维楷,庞学勇*. 2017. 川西次生灌丛和不同类型人工林对土壤养分的影响. 应用与环境生物学报,23(6): 1081-1088

[64]舒媛媛,黄俊胜,赵高卷,包维楷,李根前,庞学勇*. 2016.青藏高原东缘不同树种人工林对土壤酶活性及养分的影响,生态学报,36(2): 394-402.

[65]刘鑫,包维楷,胡斌,冯德枫,庞学勇,丁建林,吴展波. 2016. 高寒山区道路边坡植被恢复物种选择及适宜性评估. 应用与环境生物学报,22 ( 6 ) : 1015-1022.

[66]幸福,包维楷,庞学勇,闫晓丽,刘鑫. 2013. 云杉人工纯林中树木个体径向生长过程及林窗疏伐后的释放效应. 应用与环境生物学报,19 (2): 262-271.

[67]江元明,庞学勇,包维楷. 2011. 岷江上游油松与云杉人工林土壤微生物生物量及其影响因素. 生态学报, 3 :801-811.

[68]王成,庞学勇,包维楷. 2010. 低强度林窗式疏伐对云杉人工纯林地微气候和土壤养分的短期影响. 应用生态学报,21(3)541-548.

[69]庞学勇,包维楷,吴宁. 2009. 森林生态系统土壤可溶性有机碳影响因素研究进展.应用与环境生物学报,15(3): 390-398.

[70]庞学勇,包维楷,吴宁,江元明,王成. 2009. 九寨-黄龙核心景区主要植被类型土壤物理性质比较研究. 应用与环境生物学报,15(6)768-773.

[71]庞学勇,丁建林,吴福忠,王红梅,吴宁,包维楷. 2008. 露营避灾对城市公共绿地土壤呼吸的短期影响.生态学报,28(12)5884-5891.

[72]庞学勇,包维楷,吴宁. 2008. 岷江上游干旱河谷气候特征及成因分析.长江流域资源与环境,17(Z1):46-53.

[73]庞学勇,包维楷,张咏梅. 2005. 岷江上游中山区低效林改造对枯落物水文作用的影响. 水土保持学报,19(4)119-122

[74]庞学勇,包维楷,张咏梅. 2005. 岷江上游中山区低效林改造对土壤物理性质的影响,水土保持通报,25(5)12-16

[75]庞学勇,包维楷,张咏梅. 2005. 青藏高原东部暗针叶林采伐迹地小气候及植被演替. 世界科技研究与发展,27(3)47-53

[76]庞学勇,包维楷,张咏梅.2005.青藏高原东部暗针叶林采伐迹地土壤环境变化.世界科技研究与发展,27(1)62-67

[77]庞学勇,包维楷. 2005. 岷江柏各地理居群生长状况及气候因子分析. 生态环境,14(4)466-472

[78]庞学勇,包维楷. 2005. 岷江柏林下土壤养分特征及种群间差异分析. 山地学报,23(5)596-605

[79]张勇,庞学勇,包维楷,尤琛,汤浩茹,胡庭兴. 2005. 土壤有机质及其研究方法综述.世界科技研究与发展,27(5)72-78

[80]庞学勇,刘庆,刘世全,吴彦,林波,何海,张宗锦.2004. 川西亚高山云杉人工林土壤质量性状演变.生态学报,24(2)261-267

[81]庞学勇,刘世全,刘庆,林波,吴彦,何海,包维楷.2004. 川西亚高山云杉人工林地有机物和养分库的退化与调控.土壤学报,41(1)126-133

[82]庞学勇,刘庆,刘世全,吴彦,林波,何海.2004. 川西亚高山针叶林植物群落演替对生物学特性的影响.水土保持学报,18(3):45-48

[83]庞学勇,包维楷,张咏梅,冷俐,袁志忠. 2004. 岷江柏林下土壤物理性质及地理空间差异.应用与环境生物学报, 10(5)596-601

[84]庞学勇,刘世全,刘庆,吴彦,林波,何海,张宗锦.2003. 川西亚高山针叶林人工重建过程中植物群落演替对土壤物理性质的影响.水土保持学报,17(4)42-4550

[85]庞学勇,胡泓,乔永康,潘开文,刘世全,陈庆恒,刘庆.2002. 川西亚高山云杉人工林与天然林养分分布和生物循环比较.应用与环境生物学报.8(1)1-7 

[86]庞学勇,刘庆,刘世全,吴彦,林波,何海,张宗锦.2002. 人为干扰对川西亚高山针叶林土壤物理性质的影响.应用与环境生物学报,8(6)583-587

[87]庞学勇,刘世全,张世熔,夏建国,陈远学,向双.2002. 四川盆中丘陵坡土水土保持措施研究.山地学报,20(3)338-342

参编专著

[1]包维楷,庞学勇(副主编),李芳兰,周志琼,等著. 2012.干旱河谷生态恢复与持续管理的科学基础. 北京:科学出版社,pp 709.

[2]    包维楷,庞学勇,朱珠,闫晓丽,王晶,李玉武等. 2012. 旅游干扰对九寨-黄龙核心景区沿湖陆地生态系统结构与功能的影响 (第三章). 见:吴宁,包维楷,吴彦主编. 世界自然遗产地九寨与黄龙的生态环境与可持续发展. 北京:科学出版社.

[3]    何其华,庞学勇,白景文. 2009. 青藏高原东缘人工林及退化山地生态系统研究. 见:陈宜瑜(主编). 生态系统定位研究. 北京:科学出版社, pp163-168.

[4]    包维楷,庞学勇,等. 2007. 中山生态恢复与实践 (第七章)/干旱河谷及其生态恢复 (第八章). 见:吴宁(主编). 山地退化生态系统的恢复与重建理论与岷江上游的实践. 成都:四川科学技术出版社,pp 153-210.

[5]    庞学勇,包维楷. 2005. 公路建设破坏植被的恢复与重建 (第四章). 见:孙书存,包维楷(主编). 恢复生态学. 北京:化学工业出版社.

[6]    庞学勇,吴彦等. 2002. 川西云杉人工林演替过程中养分循环研究 (第五章). 见:刘庆(主编). 亚高山针叶林生态学研究. 成都:四川大学出版社.

申请或授权专利

[1]    庞学勇,陈俊文,刘庆华. 一株隔孢伏革菌及其应用. 专利号:ZL202210585440.2(授权)

[2]庞学勇,刘银. 一种坡地果园覆土立体保肥的方法. 专利号:ZL202210003572.X(授权)

[3]    庞学勇,刘银,何露露. 一种促进野生地果对土质陡边坡快速恢复的方法. 专利号:ZL202110939230.4(授权)

[4]    庞学勇,何露露. 一种亚高山灌丛冠幅调控促进建群树种生长更新的技术,专利号:ZL202011486811.9(授权)

[5]    庞学勇,包维楷,等. 一种川西地区生态公益林改造方法. 专利号:ZL201810250642.5(授权)

成果奖励

l四川省科技进步三等奖 (2012年度)