Calcium Channel Blocker Lacidipine Promotes Antitumor Immunity by Reprogramming Tryptophan Metabolism.

稿件作者:Y. Sheng, C. Qiao, Z. Zhang, X. Shi, L. Yang, R. Xi, J. Yu, W. Liu, G. Zhang, F. Wang
通讯作者:F. Wang
刊物名称:Advanced Science
发表年份:2024
卷:
期:
页码:2409310
影响因子:
文章摘要:

Dysfunction of calcium channels is involved in the development and progression of some cancers. However, it remains unclear the role of calcium channel inhibitors in tumor immunomodulation. Here, calcium channel blocker lacidipine is identified to potently inhibit the enzymatic activity and expression of indoleamine 2,3-dioxygenase 1 (IDO1), a rate-limiting enzyme in tryptophan metabolism. Lacidipine activates effector T cells and incapacitates regulatory T cells (Tregs) to augment the anti-tumor effect of chemotherapeutic agents in breast cancer by converting immunologically “cold” into “hot” tumors. Mechanistically, lacidipine targets calcium channels (CaV1.2/1.3) to inhibit Pyk2-JAK1-calmodulin complex-mediated IDO1 transcription suppression, which suppresses the kynurenine pathway and maintains the total nicotinamide adenine dinucleotide (NAD) pool by regulating NAD biosynthesis. These results reveal a new function of calcium channels in IDO1-mediated tryptophan metabolism in tumor immunity and warrant further development of lacidipine for the metabolic immunotherapy in breast cancer.